Seasonal variations in haematological parameters in yellow-bellied slider turtles (*Trachemys scripta scripta*)

J.D. Hernandez¹,², P. Castro¹, P. Saavedra³, P. Ramirez², J. Oros¹*

¹Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas, Spain
²Serviexotic, Las Palmas, Spain
³Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
*Corresponding author: jorge.oros@ulpgc.es

ABSTRACT: Yellow-bellied slider turtles (*Trachemys scripta scripta*) are increasingly being used as animal models for experimental purposes. The aim of this work was to generate some seasonal haematological information for captive yellow-bellied slider turtles as a useful and complementary tool for research trials. Blood samples from 30 healthy adult yellow-bellied turtles (13 males and 17 females) were obtained in winter and summer, and complete blood counts were performed. Within each season, the medians for males and females were compared using the Wilcoxon test for independent data. Likewise, the medians for both seasons were compared by means of the Wilcoxon test for paired data. All P-values were corrected using the Bonferroni multiple comparisons procedure. The concordance of the two methods used to determine the thrombocyte count (haemocytometer and smear estimation) was evaluated using intraclass correlation coefficients. The effects of sex were not statistically significant in either season (Bonferroni correction). However, values of heterophils, lymphocytes, basophils, and thrombocytes (haemocytometer method), when compared between seasons, exhibited differences that remained statistically significant after Bonferroni correction. Whereas heterophils were the most numerous leukocytes in summer for both sexes, basophils were the most numerous leukocytes in winter. In addition, lymphocyte percentages were also higher in winter for both sexes. Smear thrombocyte estimations did not show any significant differences between sexes and between seasons. However, when using the haemocytometer method, summer values were significantly higher than winter ones. The concordance between the two methods for measuring the thrombocyte count was not statistically significant in winter, but there was significant concordance in summer. Although the two techniques can be complementary, we recommend smear estimation as an easier and more reliable method. The haematological values obtained in this study may be useful as a complementary profile for researchers carrying out experimental procedures with this turtle subspecies.

Keywords: haematology; reptile; blood; chelonian

Yellow-bellied sliders (*Trachemys scripta scripta*) are chelonians belonging to the suborder Cryptodira (hidden-neck turtles), family Emydidae; they are distributed among semi-aquatic environments of the south-eastern United States and are mainly carnivorous/omnivorous (Boyer and Boyer 2006). Due to the ban on the import of the potentially invasive red-eared sliders (*Trachemys scripta elegans*) into the European Union (Council Regulation No. 338/97 1997), yellow-bellied slider turtles are becoming more popular as pets around the world. Both subspecies are also currently used in captivity as animal models for experimental purposes, mainly to understand reptile physiol-
ogy, in metabolic studies, and in pharmacokinetic and toxicokinetic trials (Li et al. 2010; Guirlet and Das 2012; Mans et al. 2012; Allender et al. 2013; Krivoruchko and Storey 2013; Joyce and Wang 2014; Kitana and Callard 2014). In all these experiments, it is necessary to confirm the initial health status of turtles and to evaluate the different alterations caused by experimentation; both these goals can be easily achieved through a complete blood analysis and a comparison with published reference values for the species. However, to our knowledge, no complete haematological studies of this turtle subspecies have been published. Thromocyte counts in reptiles have been performed using the haemocytometer method or the smear estimation method; both are widely used in research and accepted as standard methods (Martinez-Silvestre et al. 2011), but no studies combining or comparing the two methods have been published in reptilian medicine. The aim of this work was to provide some seasonal haematological information regarding captive yellow-bellied slider turtles as a useful and complementary tool for research trials.

MATERIAL AND METHODS

Animals. Thirteen male and 17 female adult yellow-bellied sliders (*Trachemys scripta scripta*) were used. Straight carapace length (SCL) and median weights (25th–75th percentiles) were determined as follows, winter SCL: 15.9 (12.5; 19) cm; winter weight: 0.81 (0.35; 1.26) kg; summer SCL: 17.0 (12.9; 19) cm; summer weight: 0.93 (0.40; 1.29) kg. All animals were clinically healthy on physical examination. All turtles belonged to private collections from the island of Gran Canaria, and were maintained in semi-outdoor facilities under natural conditions. The enclosures consisted of an artificial pond and a sunbathing area with a partially covered section. Variations in water temperature (14 °C to 34 °C) were recorded. Animals were fed *ad libitum* with a commercial diet (Supermenu Tortugas, Moly, Murcia, Spain); the winter food intake was approximately one third of the total amount consumed in summer. Animal treatment was in accordance with the guidelines specified by the Spanish Ministry of Agriculture, Food and Environment and was under the control of the ethical commission of Veterinary Medicine of the University of Las Palmas de Gran Canaria (agreement MV-2014/06).

Sample collection and analysis. Sample collection was always performed during the morning (from 09:00 AM to 11:30 AM). Winter sampling was carried out between the end of December and early February with average temperatures during the sampling ranging from 16 °C to 22 °C. Summer sampling was done between the end of June and early August with average temperatures ranging from 25 °C to 32 °C. Blood samples (0.5 ml) were collected in winter and summer from the dorsal coccygeal vein of each turtle using a disposable 1-ml syringe and a 30-G disposable needle, avoiding the extraction of lymphatic liquid and discarding the contaminated samples (Lopez-Olvera et al. 2003; Innis et al. 2007). Anticoagulants were not used to avoid alterations to cell morphology or staining properties (Muro et al. 1998). Two blood smears of each turtle were prepared immediately after blood collection and stained with a quick Romanowsky-type stain (Diff Quick; Panreac Quimica, Barcelona, Spain) (Casal and Oros 2007). The remainder of the blood was transferred to lithium heparin tubes (Li-Heparin LH; Sarstedt, Numbrecht, Germany) and cooled at 4 °C. Packed cell volume (PCV) was determined after centrifugation in microhaematocrit capillary tubes (Statspin; Iris Sample Processing, Chatsworth, California) at 12 000 × g for 3 min (UniCen M; Herolab, Wiesloch, Germany; Innis et al. 2007; Yang et al. 2014). Total solids were determined using a refractometer (C-6 SZJ-D; Comecta, Barcelona, Spain) (Perpinan et al. 2008). The total number of erythrocytes (RBC), leukocytes (WBC), and thrombocytes were determined using Natt-Herrick’s solution and a Neubauer haemocytometer (Neubauer improved; Marienfeld, Laudos-Konigshofen, Germany). The differential leukocyte counts were performed using a × 100 oil immersion objective. Two hundred leucocytes were classified for each turtle and season as either heterophils, eosinophils, basophils, lymphocytes, and monocytes (Hernandez et al. 2016). The thrombocyte estimation was obtained by counting the thrombocytes seen in ten fields at × 100, obtaining the mean value and multiplying by 10 000 (Wilkinson 2004). The immature erythrocyte percentage was estimated manually after counting 500 cells per animal and season (Campbell and Ellis 2007). The haemoglobin concentration (Hb) was determined by the cyanometahemoglobin method (Seidel 2002) using an automatic analyser (Celltac-α MEK-6450K; Nihon Kohden, Tokyo, Japan). Free nuclei from lysed
erythrocytes were first removed by centrifugation at 500 × g for 5 min to obtain an accurate haemoglobin concentration value (Campbell 2006). The mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC) were calculated using standard formulas (Campbell 1995).

Statistical analysis. The variables were expressed as median and interquartile range (25th–75th percentile). Within each season, the medians for males and females were compared using the Wilcoxon test for independent data. Likewise, the medians from the two seasons were compared with each other by means of the Wilcoxon test for paired data. All P-values were corrected using the Bonferroni multiple comparisons procedure. The agreement of the two methods used for thrombocyte count was evaluated using intraclass correlation coefficient.

Table 1. Haematological data for yellow-bellied slider turtles (*Trachemys scripta scripta*) in winter and summer segregated by sex, data are medians (25th–75th percentiles)

<table>
<thead>
<tr>
<th>Blood parameter</th>
<th>Winter</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total (n = 30)</td>
<td>males (n = 13)</td>
<td>females (n = 17)</td>
<td>p*</td>
<td>total (n = 30)</td>
<td>males (n = 13)</td>
<td>females (n = 17)</td>
<td>p*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCV (l/l)</td>
<td>0.22 (0.19; 0.26)</td>
<td>0.23 (0.19; 0.28)</td>
<td>0.22 (0.19; 0.25)</td>
<td>1</td>
<td>0.24 (0.22; 0.27)</td>
<td>0.24 (0.22; 0.26)</td>
<td>0.25 (0.22; 0.27)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total solids (g/l)</td>
<td>37 (28.45; 45)</td>
<td>34 (30.44; 48)</td>
<td>40 (28.48)</td>
<td>1</td>
<td>42 (31.50; 47)</td>
<td>33 (28.47; 47)</td>
<td>47 (36.53)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Haemoglobin (g/l)</td>
<td>106 (93/119)</td>
<td>111 (94/126)</td>
<td>104 (93/116)</td>
<td>1</td>
<td>105 (93/115)</td>
<td>104 (90/110)</td>
<td>106 (98/120)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RBC (× 1012/l)</td>
<td>0.57 (0.57; 0.57)</td>
<td>0.57 (0.57; 0.57)</td>
<td>0.57 (0.56; 0.57)</td>
<td>1</td>
<td>0.57 (0.57; 0.58)</td>
<td>0.57 (0.57; 0.58)</td>
<td>0.57 (0.56; 0.58)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IER (%)</td>
<td>0.4 (0.2; 0.8)</td>
<td>0.4 (0.2; 0.8)</td>
<td>0.4 (0.2; 0.6)</td>
<td>1</td>
<td>0.4 (0.2; 0.8)</td>
<td>0.4 (0.2; 0.8)</td>
<td>0.4 (0.2; 0.6)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>431.1 (371.3; 502.4)</td>
<td>431.4 (356.4; 484.9)</td>
<td>425.9 (384.6; 504.5)</td>
<td>1</td>
<td>458.3 (409.2; 508.5)</td>
<td>424.2 (400.458.3)</td>
<td>473.1 (433.3; 532.1)</td>
<td>0.306</td>
<td>1</td>
<td>0.133</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>209.2 (179.7; 219.5)</td>
<td>197.9 (179; 224.2)</td>
<td>214.8 (189.8; 218.2)</td>
<td>1</td>
<td>195.1 (173.3; 210.4)</td>
<td>184.1 (172.7; 195.8)</td>
<td>204.2 (191.8; 224.1)</td>
<td>0.374</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MCHC (g/l)</td>
<td>461 (433; 504)</td>
<td>462 (450; 511)</td>
<td>453 (430; 48.6)</td>
<td>1</td>
<td>424 (409.441)</td>
<td>423 (410; 438)</td>
<td>431 (404; 442)</td>
<td>1</td>
<td>1</td>
<td>0.133</td>
</tr>
<tr>
<td>WBC (× 109/l)</td>
<td>5.37 (4.25; 7.68)</td>
<td>5.25 (4.75; 7.50)</td>
<td>6.00 (4.25; 8.00)</td>
<td>1</td>
<td>5.00 (4.06; 7.50)</td>
<td>6.00 (4.25; 7.50)</td>
<td>4.50 (4.00; 7.25)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Heterophils (%)</td>
<td>34.2 (26.2; 41.8)</td>
<td>33.5 (25.5; 37.0)</td>
<td>35.0 (28.5; 47.0)</td>
<td>1</td>
<td>50.2 (45.1; 55.0)</td>
<td>49.0 (45.0; 50.5)</td>
<td>52.0 (45.5; 55.5)</td>
<td>1</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>11.5 (7.1; 14.2)</td>
<td>11.5 (7.5; 17.0)</td>
<td>10.5 (7.0; 13.5)</td>
<td>1</td>
<td>12.0 (9.6; 16.2)</td>
<td>13.0 (10.0; 14.0)</td>
<td>11.5 (9.5; 16.5)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Basophils (%)</td>
<td>36.8 (28.1; 40.9)</td>
<td>37.0 (32.5; 46.5)</td>
<td>36.0 (27.5; 39.0)</td>
<td>1</td>
<td>27.0 (20.4; 29.9)</td>
<td>27.0 (19.5; 30.0)</td>
<td>25.0 (23.0; 29.5)</td>
<td>1</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>12.8 (10.5; 14.0)</td>
<td>12.0 (11.0; 14.0)</td>
<td>13.0 (10.5; 15.0)</td>
<td>1</td>
<td>9.0 (8.5; 10.0)</td>
<td>8.5 (7.5; 9.5)</td>
<td>9.0 (8.5; 10.5)</td>
<td>1</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>4.2 (3.0; 6.0)</td>
<td>5.0 (3.5; 7.0)</td>
<td>4.0 (2.5; 5.0)</td>
<td>1</td>
<td>3.2 (2.0; 4.5)</td>
<td>3.5 (3.0; 4.0)</td>
<td>2.5 (1.5; 4.5)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>THH (× 109/l)</td>
<td>27.30 (22; 30)</td>
<td>28 (24; 32)</td>
<td>24 (20; 28)</td>
<td>1</td>
<td>35 (27.42)</td>
<td>42 (40; 46)</td>
<td>30 (18; 34)</td>
<td>0.068</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>THS (× 109/l)</td>
<td>42.3 (34.25; 46.5)</td>
<td>42 (40; 47)</td>
<td>38.5 (31.25; 44.95)</td>
<td>1</td>
<td>36 (27.25; 50.75)</td>
<td>39 (32; 51)</td>
<td>34.5 (24; 50)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

IER = immature erythrocytes, MCH = mean corpuscular haemoglobin, MCHC = mean corpuscular haemoglobin concentration, MCV = mean corpuscular volume, PCV = packed cell volume, RBC = total number of erythrocytes, THH = thrombocytes (haemocytometer), THS = thrombocytes (smear estimation), WBC = leukocytes

*Comparison by sex (within the seasons), Wilcoxon test for independent data: P-value after Bonferroni correction

*Comparison between seasons (totals), paired Wilcoxon test: P-value after Bonferroni correction

doi: 10.17221/159/2016-VETMED
ficients (Shrout and Fleiss 1979), which was estimated by means of a 95% confidence interval. Statistical signicance was set at \(P < 0.05 \). Data were analysed using the R package, version 3.1.0 (R Development Core Team 2014; R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Table 1 shows the medians and the interquartile ranges by season, within each season and by sex for all considered blood parameters. The effects of sex did not show statistical signicance in either season (Bonferroni correction). However, differences in the values of heterophils, lymphocytes, basophils, and thrombocytes (haemocytometer method), when compared between seasons, remained statistically signicant after Bonferroni correction. Whereas heterophils were the most numerous leukocytes in summer for both sexes, basophils were the most numerous leukocytes in winter. In addition, lymphocyte percentages were also higher in winter for both sexes.

Smear thrombocyte estimations did not show any signicant differences between sexes and between seasons. However, when using the haemocytometer method, summer values were signicantly higher than winter ones. The concordance between the two methods for measuring the thrombocyte count did not show statistical signicance in winter \((P = 0.726) \), but there was signicant concordance in summer \((P < 0.001; \text{ICC} = 0.597; 95\% \text{ CI} = 0.311; 0.785) \) (Table 2).

DISCUSSION

The increasing utilisation of yellow-bellied slider turtles in research trials underlines the importance of obtaining a better understanding of normal values for their main haematological parameters. Haematology is used in reptiles to detect conditions that affect blood cells, such as anaemia, inammatory diseases, parasitaemias, haematopoietic disorders and haemostatic alterations (Wilkinson 2004).

Despite the successful trade of pet red-eared sliders before the European Union banned the import of these animals, no complete haematological studies on red-eared sliders have been reported. Thus, only some parameters could be compared. PCV values in yellow-bellied sliders were higher than those reported in red-eared sliders by Wallach and Boever (1983), and lower than those reported by Jackson (1991); however, they were within the range reported by Crawshaw and Holz (1996). Hb values in yellow-bellied sliders were lower than those reported in red-eared sliders by Wallach and Boever (1983), and higher than those reported by Jackson (1991). Hb values in yellow-bellied sliders were lower than those reported in red-eared sliders by Wallach and Boever (1983); however, they were within the range reported by Crawshaw and Holz (1996). The absence of references on differential leukocyte counts in red-eared sliders make a comparison of this parameter impossible.

In contrast to this study, seasonal differences for PCV, Hb, and RBC have been reported in some hibernating chelonians (Jackson 1991; Raphael 2003; Heard et al. 2004). However, because of the mild and temperate climate of Gran Canaria, we did not observe real hibernations in our study. Therefore, it is not surprising that we did not find any statistical differences in immature erythrocyte percentages when comparing sexes and seasons because RBC were stable and regenerative responses were not expected (Hawkey and Dennet 1989). Sex differences for PCV, Hb, and RBC have been reported in other chelonian species (Chung et al. 2009; Carrascal-Velasquez et al. 2014; Yang et al. 2014). However, sex differences for PCV and Hb were not observed in the yellow-headed temple turtle (Hieremys anandalii) (Chansue et al. 2011). Although WBC values can be inluenced by multiple factors in most emydids (Chung et al. 2009; Chansue et al. 2011; Carrascal-Velasquez et al. 2014), we did not find any statistical differences for this parameter when comparing sexes and seasons, in agreement with

<table>
<thead>
<tr>
<th>Season</th>
<th>ICC (CI 95%)</th>
<th>(P^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>–0.111 (–0.445; 0.252)</td>
<td>0.726</td>
</tr>
<tr>
<td>Summer</td>
<td>0.597 (0.311; 0.785)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

*H_0: ICC = 0; H_1: ICC > 0
what was reported by Yang et al. (2014) for yellow-marginated box turtles (Cuora flavomarginata).

In our survey, the differential leukocyte count was highly influenced by season, but sex differences were not noticed. Heterophils were the most numerous leukocytes in summer for both sexes, and basophils were the most numerous ones in winter. Lawrence and Hawkey (1996) also reported higher heterophil counts in Mediterranean tortoises (Testudo graeca and Testudo hermanni) in summer. Data from other studies on different species of turtles and tortoises suggest a pattern of high basophil counts in freshwater cryptodiran turtles, low basophil counts in sea turtles, and variable basophil counts in tortoises (Perpinan et al. 2008). Whereas we detected higher lymphocyte percentages in winter for both sexes, most authors have described low lymphocyte percentages in other reptiles in winter (Campbell 2004; Chung et al. 2009). In our study, percentages of monocytes and eosinophils were not influenced by season. Most authors reported no seasonal variations in monocyte counts when studying other chelonians (Lawrence and Hawkey 1996; Anderson et al. 1997; Muro et al. 1998; Troiano and Silva 1998); however, higher monocyte counts were reported for Asian yellow pond turtles (Ocadia sinensis) in summer (Chung et al. 2009) and for yellow-marginated box turtles (Cuora flavomarginata) in winter (Yang et al. 2014). In addition, most studies have also identified seasonal influences on eosinophil counts (Lawrence and Hawkey 1996; Chung et al. 2009).

We used two methods to determine thrombocyte count in order to obtain more accurate results: haemocytometer and smear thrombocyte estimation. Whereas we detected sex and seasonal differences using the haemocytometer method, the smear method revealed stable and homogeneous results more consistent with other haematological parameters such as the RBC. In our opinion, thrombocyte counts determined using the haemocytometer method could have been underestimated due to the difficulty in distinguishing these cells from small lymphocytes (Martinez-Silvestre et al. 2011), because light microscopy evaluation was performed at a lower magnification than in the smear estimation. In addition, cold storage of samples prior to processing produces morphological changes that make cellular identification more difficult (Work et al. 1988). Thus, although the two techniques can be complementary, we recommend smear estimation as an easier and more reliable method.

In conclusion, the haematological values obtained in this study from the yellow-bellied slider turtle (Trachemys scripta scripta) may be used as a complementary profile, and might be useful for researchers carrying out experimental procedures with this turtle subspecies by allowing better classification of the health status of the turtles and proper monitoring of their physical changes.

REFERENCES

Received: November 3, 2016
Accepted after corrections: June 16, 2017