Therapeutic effects of a combined antibiotic-enzyme treatment on subclinical mastitis in lactating dairy cows

B. Khoramian1, M. Emaneini2, M. Bolourchi3, A. Niasari-Naslaji3, A. Gorganzadeh1, S. Abani1, P. Hovareshti3

1Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
2School of Medicine, Tehran University of Medical Sciences. Tehran, Iran
3Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

ABSTRACT: The objective of this study was to evaluate a combined antibiotic-enzyme therapy for Staphylococcus aureus mastitis and biofilm formation. A total of 141 cases of S. aureus chronic mastitis from three farms were divided into two groups: the control group (n = 54) were treated with Nafpenzal® ointment; the enzyme + antibiotic group (n = 87) were treated with Nafpenzal® plus an enzymatic ointment (MastiVeyxym®). Quantitative determination of biofilm formation was determined using a colorimetric microplate assay and the detection of ica genes by PCR. Enzyme + antibiotic therapy did not significantly improve cure rates compared to control (48.3 vs 38.9%). The cure rate for infections caused by biofilm-positive strains was 42.6 and 46.6% for control and enzyme + antibiotic groups, respectively (P > 0.05). Comparison of cure rates between farms showed a relationship with somatic cell count (SCC), parity and oxacillin resistance. 79.4% of the isolates produced biofilm and antibacterial resistance rates for oxacillin, penicillin and streptomycin were 25.5, 71.6 and 95.7%, respectively. These results indicate that while the increase in mastitis cure rate using enzymatic therapy was not significant, this treatment could be useful in some situations.

Keywords: mastitis; Staphylococcus aureus; biofilm; enzyme-antibiotic treatment; genomic DNA; ica genes

Staphylococcus aureus is the most common cause of contagious bovine mastitis which generally manifests as a chronic recurrent infection exhibiting resistance to therapy (Zecconi et al. 2006). One of the most convincing hypotheses to explain the difficulties in treating recurrent infections might be related to the ability of staphylococci to form biofilms in infected tissues (Melchior et al. 2006). Biofilms are complex communities of microorganisms attached to surfaces and surrounded by a matrix of extracellular polymer (Davey and O’Toole 2000). Biofilm formation is an important element determining the pathogenicity and antimicrobial resistance of bacteria (Snell et al. 2014; Castelani et al. 2015; Krewer et al. 2015). Biofilms can decrease or block the penetration of antibiotics by formation of a physical barrier or can bind to antibiotics with their negatively charged exopolysaccharides. Furthermore, the altered physiology of bacterial cells in biofilms and an improper response of the immune system can lead to difficulties in biofilm eradication (Melchior et al. 2006). Bacteria in biofilms may be 10 to 1000 times more resistant to antimicrobial agents as compared to the planktonic form (Melchior et al. 2006). Biofilm formation consists of two stages; the first stage comprises attachment of cells to a surface by adhesion factors and formation of a primary cell aggregation. The second stage is characterised by cell multiplication and formation of a mature multilayer structure (Melchior et al. 2006). It was found that the intracellular adhesion (ica) operon is essential for control of biofilm production (Grinholc et al. 2007). We previously described a significantly altered prevalence rate of microbial surface components that recognise adhesive matrix molecules (MSCRAMM) and of ica genes between isolates with no biofilms and biofilm-producer isolates (Khoramian et al. 2015). The ica locus consisting of the icaADBC genes encodes the proteins mediating the synthesis of polysaccha-
ride intercellular adhesions (PIA) (Araciola et al. 2001; Vasudevan et al. 2003). The biofilm matrix is a collection of polysaccharides, proteins, nucleic acids, glycoproteins and phospholipids (Czaczky and Myszka 2007). With this in mind, it is clear that enzymes can be used for degradation of biofilm (Johansen et al. 1997; Berg et al. 2001; Mecikoglu et al. 2006; Lu and Collins 2007; Chaignon et al. 2007). Enzymatic activity can be directed to the biofilm matrix, allowing better penetration of the subsequent antimicrobial agents used or can be targeted towards pathogen cell wall components in order to cause their lysis (Johansen et al. 1997; Kaplan et al. 2004).

The aim of this study was to evaluate the role of biofilm formation on the refractoriness of treatment of *S. aureus* subclinical mastitis cases and to test whether a combined antibiotic-enzymatic therapy could improve cure rates of *S. aureus* subclinical mastitis during lactation.

MATERIAL AND METHODS

Animals. The experiment was performed on three large dairy farms in Tehran, Iran with more than 100 CFU/ml of *S. aureus* in bulk milk tank. The cows were milked three times a day and subjected to pre- and post-milking teat disinfection. Cows were housed in loose barns and fed with total mixed ration (TMR). Individual milk samples were collected from cows with a cow composite milk SCC above 400 000 cells/ml for two consecutive months. Cows with subclinical *S. aureus* mastitis in only one quarter and with lactation numbers one to seven (median = three) and lactation months two to ten (median = five) were enrolled in the study. They had no concurrent disease and received no clinical mastitis or anti-inflammatory treatments within the preceding 14 days.

Sampling and Bacterial isolation. A total of 141 isolates of *S. aureus* were collected from milk samples of cows with subclinical mastitis. Sampling, culture and identification of the bacteria were performed according to the National Mastitis Council (NMC). *S. aureus* was identified by Gram staining, production of coagulase, catalase, DNase, oxidation and fermentation of mannitol. To confirm the identity of *S. aureus*, the nucA gene was amplified by a PCR-based method, using the primers listed in Table 1. A quarter milk sample was considered to be contaminated when three or more bacteria could be isolated. Another sampling was performed from the affected quarters 14 and 28 days after the last treatment for bacteriological investigations. A bacteriological cure was signified if the samples taken from the affected quarter were negative.

Treatment groups. Cows were randomly allocated into two treatment groups: (1) The control group (*n* = 54) were treated only with intramammary infusion of 100 mg sodium nafcillin with 180 mg sodium penicillin, and 100 mg dihydrostreptomycin sulphate (Nafpenzal MC; Intervet International, Boxmeer, Netherlands) every 24 h for three consecutive days. (2) The enzyme + antibiotic group (*n* = 87) were treated with Nafpenzal Ointment plus a commercial preparation consisting of 8 mg chymotrypsin, 8 mg trypsin, 4 mg papain, 100 000 IU vitamin A and 120 mg vitamin E (MastiVeyxym; Veyx-Pharma GmbH, Germany) every 24 h for three consecutive days.

Quantification of biofilm production. Quantitative determination of biofilm-forming capacity was determined using a colorimetric microtiter plate Assay as described by Peeters et al. (2008) with slight modifications. Briefly, *S. aureus* isolates were grown overnight at 37°C in trypticase soy broth (TSB) (Merck, Darmstadt, Germany) and then the bacterial suspensions were diluted

Table 1. The oligonucleotide primers used in this study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence (5’ to 3’)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>nucA-F</td>
<td>5’-TGGGCATATGTGATGGCAATTGTT-3’</td>
<td>Sahebekhtiari et al. 2011</td>
</tr>
<tr>
<td>nucA-R</td>
<td>5’-TATTTGAACCTGAATCAGCGTTGCT-3’</td>
<td></td>
</tr>
<tr>
<td>icaA-F</td>
<td>5’-ACACTTGTGCGGCGAGTCAA-3’</td>
<td>Arciola et al. 2001</td>
</tr>
<tr>
<td>icaA-R</td>
<td>5’-TCTGGAAACCAACATCCAACA-3’</td>
<td></td>
</tr>
<tr>
<td>icaD-F</td>
<td>5’-ATGGTCAAAGCCACAGACAGG-3’</td>
<td></td>
</tr>
<tr>
<td>icaD-R</td>
<td>5’-ATGTATTGTTAAAGCAGAGG-3’</td>
<td></td>
</tr>
</tbody>
</table>
1: 100 in medium. One hundred and fifty µl of this cell suspension were used to inoculate sterile flat-bottomed 96-well polystyrene microtiter plates. Subsequent to an incubation period of 24 h at 37 °C without shaking, wells were gently washed three times with 200 µl of phosphate buffered saline (PBS) and dried in an inverted position. For fixation of biofilms, 150 µl of 99% methanol were added and after 15 min supernatants were removed and the plate was air-dried. Then, 150 µl of crystal violet 1% (CV) were added to all wells. After 20 min the excess CV was removed by washing the plate under running tap water. Finally, bound CV was released by adding 150 μl of 33% acetic acid. The optical density (OD) of each well was measured at 590 nm using a microtiter plate reader. All the assays were repeated three times. As a control, uninoculated medium was used to determine background OD. The cut-off OD (ODc) was defined as three standard deviations above the mean OD of the negative control. According to the results of the microtiter plate test, the isolates were classified into the following four categories based on the optical density: non-biofilm producers (OD test < ODc), weak biofilm producers (ODc < OD < 2 × ODc), moderate biofilm producers (2 × ODc < OD < 4 × ODc), and strong biofilm producers (4 × ODc < OD).

Detection of ica genes. Whole genomic DNA from cultured strains was prepared using the phenol-chloroform method. icaA and icaD genes were detected by a PCR method using the specific oligonucleotide primers listed in Table 1. Amplification was performed in a final volume of 25 µl containing 300nM of each primer, 1 × reaction buffer, 2.5mM MgCl₂, 0.2mM dNTPs, 5 µl of template DNA and 1.5 IU of Taq polymerase (Fermentas, UAB, Lithuania). The PCR conditions consisted of a pre-denaturation step at 94 °C for 5 min, followed by 30 cycles of 45 s at 94 °C, 45 s at 54 °C and 40 s at 72 °C. A final extension step was performed at 72 °C for 5 min. Amplified products were analysed by electrophoresis on 1% agarose gels. DNA bands were visualised by staining with ethidium bromide and were photographed under UV illumination.

Antimicrobial susceptibility testing. In vitro susceptibility of S. aureus isolates was determined using the disk agar diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The following antibiotics were tested: penicillin (10 units), oxacillin (1 µg) and streptomycin (10 µg). S. aureus ATCC 29213 was used as the reference strain for quality control purposes.

Statistical analysis. SAS software (version 9.2; SAS Institute, Cary, NC) was used for statistical analysis. Differences in cure rates and the prevalence of genes between S. aureus strains and farms were calculated using the chi-square test. Thereafter, data were analysed with a multivariate logistic regression using the LOGISTIC procedure of SAS. Parity, days in milk, SCC, treatment, presence of ica genes, biofilm formation and antimicrobial resistance were considered as covariates in the models to examine effects on cure rates. A P-value of ≤ 0.05 was considered statistically significant.

RESULTS

There was no significant difference in cure rates between the two groups (48.3 vs 38.9%) (Table 2),

<table>
<thead>
<tr>
<th>Group</th>
<th>Cure rate</th>
<th>icaA+</th>
<th>icaD+</th>
<th>Biofilm+</th>
<th>Mean score value of biofilm</th>
<th>Antibiotic resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme +</td>
<td>48.3% (42/87)</td>
<td>66.7% (58/87)</td>
<td>64.4% (56/87)</td>
<td>74.7% (65/87)</td>
<td>0.98</td>
<td>oxacillin 24.1% (21/87) penicillin 70.1% (61/87) streptomycin 96.6% (84/87)</td>
</tr>
<tr>
<td>antibiotic</td>
<td>(21/54)</td>
<td>(35/54)</td>
<td>(33/54)</td>
<td>(47/54)</td>
<td>1.20</td>
<td>(15/54)</td>
</tr>
<tr>
<td>Control</td>
<td>38.9% (21/54)</td>
<td>64.8% (35/54)</td>
<td>61.1% (33/54)</td>
<td>87% (47/54)</td>
<td>1.2</td>
<td>27.7% (15/54) penicillin 74% (40/54) streptomycin 94.4% (51/54)</td>
</tr>
<tr>
<td>Total</td>
<td>44.7% (63/141)</td>
<td>66% (93/141)</td>
<td>63.1% (89/141)</td>
<td>79.4% (112/141)</td>
<td>1.13</td>
<td>25.5% (36/141) penicillin 71.6% (101/141) streptomycin 95.7% (135/141)</td>
</tr>
</tbody>
</table>

*same letters in each columns are not significantly different from each other (P > 0.05)
icaA+/icaD+ = presence of icaA/icaD gene in S. aureus strains. Biofilm+: all weak, moderate or strong biofilm producer.
Mean score value of biofilm: score 0 = non biofilm producers, score1 = weak biofilm, score 2 = moderate biofilm, score 3 = strong biofilm
among the three farms, irrespective of the treatment protocol ($P > 0.05$). Comparison of the two treatment strategies on each farm did not show any significant difference ($P > 0.05$). Further, there were no significant differences between the icaA and icaD prevalences, biofilm formation capacity and antimicrobial resistance patterns in isolates from both treatment groups (Table 2).

In the current study, cure rates in biofilm-positive strains were 42.6 and 46.6% for control and Enzyme + antibiotic groups, respectively ($P > 0.05$). On farm B, with the lowest cure rate (34.2%), the lowest prevalence of ica genes, biofilm formation capacity, penicillin and streptomycin resistance rates in *S. aureus* isolates, and days in milk (DIM) were noted; however, these isolates exhibited the highest SCC, parity, and oxacillin resistance. Furthermore, farm A with the highest cure rate (55%) had the highest prevalence of ica genes, biofilm formation and penicillin and streptomycin resistance and DIM but had the lowest SCC, parity and oxacillin resistance (Table 3). The evaluation of the effect of independent variables on cure rates by logistic regression did not reveal any significant differences ($P > 0.05$). Approximately 79.4% (112/141) of the isolates produced biofilm. In the biofilm-producing strains, 61.6% (69/112) of isolates were weak, 33.9% (38/112), while 4.5% (5/112) were moderate and strong, respectively. Antibacterial resistance rates for oxacillin, penicillin and streptomycin were 25.5%, 71.6% and 95.7% by the disk agar diffusion method, respectively.

DISCUSSION

Mastitis caused by *S. aureus* is one of the most common types of chronic mastitis. The poor predictive capacity of *in vitro* antibiotic susceptibility tests for bacteriological treatment, the higher cure rate of acute infections than chronic infections and the usefulness of extended therapy for improving cure rates are often attributed to bacterial biofilm formation. Many studies have found alternatives strategies for eradication of biofilms or for prevention of biofilm formation. Enzymes represent an alternative option for the degradation of bacterial biofilms (Johansen et al. 1997; Berg et al. 2001). For many biofilms, proteins are the largest percentage of the total material (Molobela et al. 2010), so proteases are able to cleave these proteins at specific amide bonds, effectively destroying the physical structure of a biofilm (Leslie 2011).

The prevalence of icaA and icaD genes in our study was 66 and 63.1%, respectively. The evaluation of the effect of independent variables on cure rates by logistic regression did not reveal any significant difference ($P > 0.05$). Also, comparison of the cure rates among the three farms revealed no effect of the high prevalence of ica genes or biofilm formation capacity on cure rate.

The results of this study contradict those of previous studies showing that formation of biofilm has an impact on the efficacy of antimicrobial therapy and the subsequent outcome of infection (Gotz 2002; Parsek and Fuqua 2004; Castelani et al. 2015;
Krewer et al. 2015). This may be due to the fact that biofilm production in the mammary tissue is different from the in vitro situation. Also, it was shown that other factors like SCC, parity and oxacillin resistance are more important than the presence of ica genes and biofilm formation capacity.

The results of the present study show that the concomitant in vivo use of a mixture of enzymes with antibiotics slightly improved cure rate; however, this improvement was statistically non-significant. Also, there was no statistically significant difference between cure rates of biofilm-positive strains in the two groups. Some in vitro studies have suggested the possibility of using enzyme in removing biofilms (Johansen et al. 1997; Berg et al. 2001; Kaplan et al. 2004). Chaignon et al. (2007) showed that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between clinical isolates; they tested the effect of different enzymes on biofilms and suggested a complex mixture of dispersin B and a protease (like trypsin) to remove the biofilms of a variety of staphylococcal strains. Other in vitro studies showed that proteolytic enzymes (Selan et al. 1993) or lysostaphin (Walencka et al. 2005; Walencka et al. 2006) could significantly enhance the activities of antibiotics against biofilms.

There are a few in vivo studies on the use of enzymes for eradicating infection caused by biofilms. Kokai-Kun et al. (2009) showed that lysostaphin administered at 15 mg/kg in combination with 50 mg/kg nafcillin, three times per day for four days in mice, eradicated S. aureus biofilms from implanted catheters and eliminated heart and liver infections in S. aureus-infected mice (Kokai-Kun et al. 2009). Mecikoglu et al. (2006) showed that serratipeptidase was effective for eradicating infection caused by biofilm-forming bacteria, and also that the anti-biofilm property of the enzyme may enhance antibiotic efficacy in the treatment of staphylococcal infections (Mecikoglu et al. 2006). The different results found in the present study could be due to the type of enzyme. Also, it was indicated that other factors like SCC, parity and antimicrobial resistance are more important than biofilm formation capacity. This probably suggests that enzymes increase the cure rate by breaking down pus, clot and fibrin and by clearing the milk duct and without any effect on biofilm. Some investigators showed that the use of enzyme is not useful in the planktonic condition of growth (Selan et al. 1993; Johansen et al. 1997; Berg et al. 2001; Kaplan et al. 2004). We evaluated biofilm formation capacity outside of the mammary gland; obviously, our in vitro conditions may differ from the in vivo situation.

In conclusion, the data described in the present paper indicate that biofilm-forming capacity is not the most important predictive factor associated with cure rate after treatment of subclinical mastitis caused by S. aureus. Moreover, the use of enzymatic ointment together with antibiotics slightly, but non-significantly, improved the cure rate. Further research is needed to test the effects of other enzymes on cure rates.

Acknowledgement

The authors express their sincere appreciation to Dr. Mohammad Amin Eslampour, Mrs Marzieh Aligholi, Dr. Abas Barin (Faculty of Veterinary Medicine, University of Tehran) for scientific advising and their skilful laboratory work during experiment.

REFERENCES

