Occurrence and diversity of *Eimeria* species in cattle in Hamedan province, Iran

H. Heidari¹, Z. Sadeghi-Dehkordi¹, R. Moayedi¹, J. Gharekhani²

¹Faculty of Paraveterinary Medicine, University of Bu-Ali Sina, Hamedan, Iran
²Iranian Veterinary Organization, Hamedan, Iran

ABSTRACT: Information on the occurrence, diversity and economic losses due to *Eimeria* infection on cattle farms is lacking in Western Iran. The principal aim of this study was to determine the prevalence and diversity of *Eimeria* species in cattle in Hamedan province, Western Iran. In a cross-sectional study performed from June 2010 to April 2013, 400 faecal samples were collected randomly from animals without clinical signs from different cattle farms of Hamedan province and examined for *Eimeria* species infection using parasitology methods. The overall infection rate of *Eimeria* species was 8.25%. Nine species of *Eimeria* were identified including: *E. bovis* (23.7%), *E. zuernii* (19.2%), *E. canadensis* (12.6%), *E. ellipsoidalis* (11.4%), *E. alabamensis* (10.4%), *E. pellita* (9.1%), *E. auburnensis* (6.8%), *E. cylindrica* (4.6%) and *E. bukidnonensis* (2.3%). There were statistically significant differences with respect to *Eimeria* infection and age group (*P* < 0.0001, OR = 6), although no statistically significant relationships were found for sex (*P* = 0.35) or faecal consistency (*P* = 0.587). In conclusion, this study is the first to report the prevalence and diversity of *Eimeria* species in cattle in Hamedan province. Infection with pathogenic *Eimeria* spp. was asymptomatic in all animals; this is the reason for the transmission of infection by carriers in this region. Therefore, integrated strategies should be utilised to prevent and control *Eimeria* spp. infection on cattle farms.

Keywords: *Eimeria* spp.; OPG; risk factors; faecal samples; calf age; Iran

Bovine coccidiosis is a protozoan disease caused by various species of *Eimeria* (Almeida et al. 2011). Coccidiosis is responsible for major economic losses in animal husbandry worldwide (Nisar-Khan et al. 2013). Adult animals are usually asymptomatic carriers that often serve as a source of infection for juvenile animals, which are more susceptible to infection (Faber et al. 2002; Abebe et al. 2008).

Coccidiosis is commonly a self-limiting disease; most signs of bovine coccidiosis are chronic or subclinical (Nalbantoglu et al. 2008). The clinical picture of coccidiosis depends on the innate pathogenicity of different *Eimeria* species. More than 20 *Eimeria* spp. have been identified in cattle worldwide (Daugschies and Najdrowski 2005). *E. zuernii* and *E. bovis* are known to be highly pathogenic, causing morbidity and even mortality associated with diarrhoea, mucus and blood stains. The other species have been shown experimentally to be mildly or moderately pathogenic, but they are not considered important pathogens (Lucas et al. 2006). *Eimeria* spp. develop only in the intestinal epithelial cells, leading to mucosa damage and the appearance of clinical signs, malnutrition, weakness, anaemia, diarrhoea and haemorrhagic faeces (Yu et al. 2011; Nisar-Khan et al. 2013).

Diagnosis of coccidiosis depends on the discovery of oocysts on faecal examination using direct smear, flotation or McMaster’s techniques. The number of oocysts per gram of faeces (OPG) is helpful in confirming coccidiosis as a cause of clinical disease (Almeida et al. 2011; Nisar-Khan et al. 2013).

Studies on bovine coccidiosis are limited to a few studies carried out in Iran (Yakhchali and Gholami 2008; Yakhchali and Zarei 2008; Davoudi et al. 2011). However, there are no published data on coccidiosis in cattle in the Hamedan province. The main aim of the current study was to determine the prevalence and diversity of *Eimeria* species in cattle in Hamedan province, Western Iran.
MATERIAL AND METHODS

Study area. Hamedan province, a mountainous region with a mild climate, is located in the western part of Iran (34.77 °N and 48.58 °E). It covers an area of 19,546 km² and average annual temperature is 11.3 °C. This province is economically important for crops and animal husbandry such as cattle.

Sample collection. In a cross-sectional study from June 2012 to April 2013, 400 faecal samples were collected randomly from different cattle farms (n = 17) in Hamedan province (Thrusfield 1997). None of the animals showed clinical signs of disease. Faecal samples were removed directly from the rectum of each animal using disposable examination gloves. The samples were collected into plastic bags, labelled and stored at 4 °C until processing. Information about age (≤ 1 and > 1 years old) and sex of the animals was obtained at physical examination (Table 1).

Parasitology examination. The presence of oocysts in faecal samples was examined with a flotation method using saturated sodium chloride solution (Yu et al. 2011). The modified McMaster technique was used to quantify the OPG. For sporulation, positive samples were placed in Petri dishes, conditioned with a solution of 2.5% potassium dichromate at room temperature and aired daily for up to two weeks.

The Eimeria species were determined based on the morphology of oocysts and sporocysts (shape, colour, form index, micropyle and its cap, presence or absence of residual, polar granule) and time of sporulation (Soulsby 1986; Eckert et al. 1995; Yu et al. 2011). For identification, at least 10 oocysts of each species were morphologically characterised (Almeida et al. 2011).

Statistical analysis. Statistical analysis was performed using the SPSS software package version 16.0 for Windows. The differences between infection rate and sex, age groups and faecal consistency were evaluated using the Chi-square test. A P-value ≤ 0.05 was considered statistically significant.

RESULTS

Oocysts of Eimeria spp. were found in 33 of 400 faecal samples (8.25%, CI 0.95: 6.35–10.15). Among cattle farms, 70.5% (12/17) were found positive. In descending order of discovery rate the Eimeria spp. were E. bovis (23.7%), followed by E. zuernii (19.2%), E. canadensis (12.6%), E. ellipsodalis (11.4%), E. alabamensis (10.4%), E. pellita (9.1%), E. auburnensis (6.8%), E. cylindrica (4.6%) and E. bukidnonensis (2.3%). Mixed infections with two or more Eimeria spp. were observed in all animals.

The following OPG counts were determined: 100 in 42.2% of samples, 200 (24.2%), 300 (9.1%), 1000 (9.1%), 5000 (6.1%), 400 (3%), 500 (3%) and 600 (3%).

The infection rate was recorded as 14.7% and 2.7% in ≤ 1 and > 1 year age groups, respectively, (χ² = 18.574, P < 0.0001, Odds ratio = 6). There was no significant correlation between infection rate and sex (Table 1; χ² = 0.097, P = 0.754) or between infection rate and faecal consistency (χ² = 0.293, P = 0.587).

DISCUSSION

Coccidiosis is a common problem in cattle worldwide (Davoudi et al. 2011). Studies have shown prevalences of Eimeria oocyst excretion of up to 8% to 100% at farms in general (Bangoura et al. 2012). Research performed in other countries has revealed prevalence rates of Eimeria spp. varying from 17.9% to 93% in Poland (Pilarczyk et al. 2000; Klockiewicz et al. 2007; Pilarczyk et al. 2009), 33% in Hungary (Farkas et al. 2007), 22.6% and 33.3% in Brazil (Almeida et al. 2011; Poscoti-Bruhn et al. 2011), 35% to 47.1% in China (Yu et al. 2011; Dong et al. 2012), 50% in Pakistan (Nisar-Khan et al. 2013), 22.7% and 68% in Ethiopia (Abebe et al. 2008; Dawid et al. 2012), 20%, 68% and 75% in Turkey (Arslan and Tuzer 1998; Cicek et al. 2007; Nalbantoglu et al. 2008), 29%, 50% and 52% in...
Coccidiosis is a self-limiting disease and spontaneous recovery without specific treatment is common when the multiplication stage of the coccidia has passed. This could suggest that previous exposure might have contributed to the development of a certain level of immunity in older calves as compared to the younger ones that did not experience previous exposure (Dawid et al. 2012). Chibunda et al. (1997) and Faber et al. (2002) also pointed to the presence of an immature immune system in younger calves resulting in their higher susceptibility to coccidiosis. In contrast, older calves can develop immunity in response to previous exposure, and hence be more resistant to subsequent reinfections.

In this study, the infection rate was 7.6% in male and 8.5% in female calves (Table 1, \(P = 0.035 \)). Similarly to this finding, Dawid et al. (2012) did not find a significant association with sex. The absence of a significant correlation between infection and animal sex might suggest that both male and female animals have an almost equal likelihood of being infected with coccidia. Yet, female calves harbour more coccidia than male calves; this could be attributed to the greater physiological stress experienced by female animals in relation to pregnancies and giving birth (Dawid et al. 2012). Research on the impact and role of different breeds and sex on infection prevalence is highly recommended. Further, elucidating the effects of interracial breeding and the selection of resistant breeds will be very helpful in reducing economic losses.

In our study, two pathogenic species of *Eimeria* spp. were identified: *E. bovis* (23.7%) and *E. zuernii* (19.2%), while seven non-pathogenic species were detected: *E. canadensis* (12.6%), *E. ellipsodalis* (11.4%), *E. alabamensis* (10.4%), *E. pellita* (9.1%), *E. auburnensis* (6.8%), *E. cylindrica* (4.6%) and *E. bukidnonensis* (2.3%). This is in agreement with data reported by other researchers (Ernst et al. 1984; Kasiman and Al-Shawa 1985; Cicek et al. 2007; Farkas at al. 2007; Almeida et al. 2011), and indicates that *Eimeria* spp. have a significant pathogenic potential in cattle in Hamedan province.

A number of authors have reported that *E. zuernii* and *E. bovis* were the most prevalent species in cattle, but clinical coccidiosis was not observed in those animals (Ernst et al. 1984; Kennedy and Kralka 1987; Cornelissen et al. 1995). This finding is in close agreement with the results of our study.

The OPG count in this study shows a medium variation. The numbers of oocysts found in calf faeces ranged between 100 and 5000. The maximum OPG levels observed thus far were 267 000 in Ethiopia (Abebe et al. 2008), 109 000 in Canada (Kennedy and Kralka 1987), 30 600 in Kenya (Munyua and Ngotho 1990), and 52 000 in Turkey (Arslan and Tuzer 1998). OPG values over 5000 may indicate a clinical case (Arslan and Tuzer 1998).
Different study designs and methods, hygiene conditions and management in farms, poor nutrition and sanitation, change of diet, breeding of animals, stress factors such as weaning, high animal density, climate and different geographical regions, may all contribute to the variation in results (Yu et al. 2011; Dawid et al. 2012).

In conclusion, this study is the first to report the prevalence and diversity of *Eimeria* species in cattle in Hamedan province, Western Iran. Infection with pathogenic *Eimeria* spp. was asymptomatic in all animals; this is the reason for the transmission of infection by carriers in this region. Therefore, integrated strategies should be put into practice to prevent and control *Eimeria* spp. infection on cattle farms.

Acknowledgements

We greatly appreciate the staff members of the Parasitology Laboratory of the Paraveterinary faculty, Bu-Ali Sina University for their kind help.

REFERENCES

Received: 2014–04–17
Accepted after corrections: 2014–07–30

Corresponding Author:
Jamal Gharekhani, Iranian Veterinary Organization, Mellat street, Postal Box: 6519611156, Hamedan, Iran
E-mail: Gharekhani_76@yahoo.com