Ovariectomy of a brown bear (Ursus arctos): a case report

Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia

ABSTRACT: Reproductive control is regularly implemented in bear facilities to prevent crowding of enclosures and surplus animals. Ovariectomy may represent an efficient method of sterilizing bears yet has not been reported in the literature. A 73 kg female brown bear, age two years and three months, was anesthetized for ovariectomy with tiletamin and zolazepam (Zoletil®), Virbac S.A., Carros Cedex, France) and medetomidin hydrochloride (Domitor®, Pfizer Animal Health, New York, USA). A 25 cm midline incision that extended from the umbilicus to the pubic brim was made. The suspensory ligament was stretched and blunt dissected so that ovaries in bursa were exposed on the surgical field. A “Figure 8” ligature was placed between two forcepses and a circumferential ligature was placed around proximal forceps at the ovarian pedicle. Another “Figure 8” ligature was placed between two forcepses and a circumferential ligature was placed around distal forceps at the cranial tip of the uterine horn. No surgical complications occurred, and no complications have transpired during the 12 month post-operative period.

Keywords: brown bear; ovariectomy; reproductive control; sterilization; Ursus arctos

List of abbreviations:
OVH = ovariohysterectomy; OVE = ovariectomy; IM = intramuscularly
Case description

The surgery took place in a facility for orphan brown bears, without facilities for releasing them back into the wild. A captive female brown bear, age two years and three months, mass 73 kg, was anesthetized with 2.5 mg/kg tiletamin-zolazepam (Zoletil®, Virbac S.A., Carros Cedex, France) and 0.05 mg/kg medetomidin hydrochloride (Domitor®, Pfizer Animal Health, New York, USA) for surgical sterilization (Kreeger and Anremo, 2007; Carpenter and Brunson, 2007). Anaesthetics were administered intramuscularly (IM) to the gluteal region by Dan-Inject injection gun (10 ml Dan-Inject plastic dart syringes) (Dan-Inject ApS, Borkop, Denmark) and after 2 min and 15 s the animal lay down. During the surgery a supplementary dose of anaesthetic was administered IM because the animal started to show signs of decreasing anaesthetic effect (increased lip and eye lid movements, slight head movements); 75 min after the first dose 2.0 mg/kg tiletamin and zolazepam and 0.01 mg/kg medetomidin hydrochloride were administered. Tiletamine-zolazepam has low-potent analgetic intraabdominal effect, so medetomidine, an α₂-adrenergic agonist, was added to the anaesthetic protocol because of its analgetic intraabdominal effects (Nielsen, 1996). Prior to the surgery the animal was weighed and body measurements and blood samples were taken.

A 25 cm midline surgical incision from the umbilicus to the pubic brim was made. The incision proceeded through the skin, subcutaneous fat tissue, linea alba and peritoneum. Subcutaneous fat tissue was 2.5 to 3 cm thick.

After celiotomy, the ovaries and the non-enlarged uterus in the juvenile nulliparous female bear were palpated caudally to the kidneys and attached to the last two ribs with short suspensory ligaments. Suspensory ligaments, ovarian pedicles and broad ligaments were incorporated into abdominal fat tissue. The uterine bifurcation and cervix were located in the pelvic cavity and were difficult to exteriorize (Figure 1). An inability to expose the genital tract to the surgical field without damaging the ovarian artery and veins incorporated in fat was the reason for performing OVE instead of OVH. These problems could prolong the duration of surgery and general anaesthesia and cause postoperative complications such as infection, prolonged and delayed wound healing, incision swelling, ventral body wall dehiscence, self-inflicted trauma and pain (Van Goethem et al., 2006).

The suspensory ligament was stretched and manually blunt dissected inside the abdomen so that the ovary in bursa was exposed into the surgical field. A hole was made in the broad ligament in order to put two tissue forcepses on the ovarian pedicle. The arteriovenous complex within the pedicle was ligated with “Figure-8” (transfixing) ligature that was placed between two tissue forcepses. Proximal to the first ligature, a circumferential ligature was placed at the crushing groove that remained after the removal of the proximal clamp. The ovarian pedicle was then transected between the “Figure-8” ligature and distal forcepses that was used as a hemostat. The uterine artery and vein were ligated at the cranial tip of the uterine horn, a few millimeters caudal to the proper ligament after two tissue forcepses were placed. The “Figure-8” ligature was placed proximally between the forcepses, whereas the circumferential ligature was placed in
the crushing groove that remained after the distal forceps were removed (Figure 2). The ovary was removed by transection between remaining tissue forceps as a hemostat and the “Figure-8” ligature. All ligatures were made with one absorbable polyglycolic acid suture material (PGA) (Serapid®, Serag-Wiessner KG, Naila, Germany). Before the abdominal closure, inspection of ovarian pedicles and the cranial tip of the uterine horn were performed and haemoserous fluid was removed. The abdomen was closed with a simple continuous suture pattern, secured in the middle with an Aberdeen knot using the two absorbable suture material PGA (Serapid®, Serag-Wiessner KG, Naila, Germany). Subcutaneous tissue was closed with a simple continuous suture using 2-0 absorbable suture material PGA (Serapid®, Serag-Wiessner KG, Naila, Germany). In order to avoid subsequent removal of the skin stitches, which would require further anaesthesia and cause more stress, the skin incision was closed using two absorbable suture material PGA (Serapid®, Serag-Wiessner KG, Naila, Germany) with a simple interrupted suture. There was no doubt that a subcuticular suture could be
placed in order to close the skin wound, as has been described in dogs (Fossum Welch, 2002; Toombs and Clarke, 2003b). A simple interrupted suture was placed because of the thinness of the skin and thus the inconvenience of placing subcuticular sutures and because of the possibility of the bear licking the wound and consequent suture dehiscence.

Passive immunization against *Clostridium tetani* toxin was achieved by application of a prophylactic dose of tetanus antitoxin (Tetanus antitoxin 300®; Veterina d.o.o., Zagreb, Croatia) subcutaneously (SC) in plica geni 3600 IU. Antimicrobial prophylaxis was achieved by IM administration of 12 ml procaine-benzyl penicillin (Benzapen®, Veterina d.o.o., Zagreb, Croatia) and 12 ml sulphapyridasine (Sulfapyridazin 25%; Veterina d.o.o., Zagreb, Croatia). The operation lasted for 45 min, while the animal was completely awake after six hours. The first dose of anaesthetic was calculated based on estimated body weight, but the duration of anaesthesia was insufficient for ovariecetomy (Ledecky et al., 2003; Radisic et al., 2007). Thus, an additional dose of anaesthetics based on measured body weight was administered, which maintained sufficient anaesthesia depth but prolonged recovery time. Although the usage of NSAID was described in postoperative analgesia for male bears, in this case, according to our observations, the analgetic effect of medetomidine was sufficient (Ledecky et al., 2003). Potential side-effects of NSAID (coagulation disorders, intraabdominal bleeding) were also a reason for avoid their use in this case. After surgery, the treated animal was returned to its enclosure. Daily monitoring showed no post-operative complications, such as inapetence, bleeding, prolaps of abdominal organs, swelling in the inguinal region or inability to stand up or walk because of the pain. The surgical wound healed “per primam”. One year after the operation no uterine pathology was observed in the treated animal.

DISCUSSION AND CONCLUSIONS

There is no advantage in performing OVH over the simpler, less expensive, less invasive and less time-consuming OVE which (in the absence of specific indications for removing the uterus) should therefore be considered the ideal, and most ethical, approach to gonadectomy in bitches and queens (Van Goethem et al., 2006; Kirpensteijn, 2008). OVE also appears to be an appropriate method of birth control for captive brown bears and may be performed more efficiently than OVH, as the uterus is difficult to exteriorize in this species. The only bear uterine pathology described in the literature is a case of pyometra (Friedrich et al., 2008). Uterine pathology following OVE occurs infrequently in dogs and may be unlikely to occur in ovariecetomized bears; however, it warrants further study in Ursid species.

REFERENCES

Received: 2010–06–23
Accepted after corrections: 2010–07–17

Corresponding Author:
Berislav Radisic, Ph.D., D.V.M., Clinic of Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
Tel. +385 1 2390 387, E-mail: bradisic@vef.hr
THE VETERINARY BIOTECHNOLOGY, EPIDEMIOLOGY AND FOOD SAFETY NETWORK (CENTAUR)

The CENTAUR network aims at upgrading the standards of economically significant priority animal diseases control in the region with particular emphasis on transboundary animal diseases, animal health and consumer protection.

The CENTAUR is willing to achieve it through dissemination of scientific information, training, links with the international centres of excellence and cooperation. The important task is also to present the problems, personalities, institutions, and scientific achievement of the region. Efficient utilization of Internet, e-mail and improvement in English language proficiency is followed, too.

Under the CENTAUR network the CENTAUR NEWSLETTER FLASH INFORMATION (CNFI), an international electronic bulletin (ISSN 1213-368X), is published, providing subscribers with instant information in the form of e-mail messages relating to fields of interest which subscribers define themselves during the process of registration. CNFI covers global animal disease-related events and is distributed to the registered readers from all over the world. The number of subscribers has been growing rapidly and new registrations are always welcome. More than 1200 registered members of the CENTAUR network from 70 countries receive the e-mail information at present. The web page http://centaur.vri.cz is frequently visited by colleagues from countries of all continents.

The forms of CNFI are as follows:

E-MAIL MESSAGES are distributed to field specific registered members. Sometimes identical information is distributed to more fields of interest. Therefore second mail with identical subject and time of dispatching should not be opened but immediately deleted.

CNFI BULLETIN: approximately 10 issues per year with general information for the CENTAUR network members are distributed to all registered addresses as an attachment to e-mail. This bulletin is also available for downloading from the CENTAUR web page http://centaur.vri.cz

CENTAUR network members are welcome as authors of original papers or reviews submitted for publication in an international peer reviewed journal for veterinary medicine and biomedical sciences Veterinarni medicina, indexed in the Web of Science, Current Contents and other databases. Papers published in this journal are free in full text at http://vetmed.vri.cz

CENTAUR network members can request the Editor for search from the published papers if their intentions are oriented towards to contributions for CNFI or submission the manuscript for publication in the journal Veterinarni medicina.

CNFI subscription is free. Register your “fields of interest” according to the instructions available at http://centaur.vri.cz/default.asp?page=cent_reg.asp and you will receive instant confirmation of your choice by e-mail. To unsubscribe or change the selected fields of interest, send an e-mail to the CNFI editor <hruska@vri.cz>. Contributions, comments and requests of the subscribers are welcome.

CNFI and the CENTAUR network are your tools!