Variations in contamination by mercury, cadmium and lead on swine farms in the district of Hodonín in 1994 to 1999

R. Ulrich¹, J. Raszyk¹, A. Nápravník²

¹Veterinary Research Institute, Brno, Czech Republic
²State Veterinary Institute, Brno, Czech Republic

ABSTRACT: Environmental samples (n = 254) were collected at regular intervals from 1994 to 1999 on three swine farms in the area of the district town Hodonín, Czech Republic. The samples of feed mixtures (n = 85), barn dust sediments (n = 44), and muscular (n = 42), hepatic (n = 41), and renal (n = 42) tissues of feeder pigs were analysed for the concentrations of mercury, cadmium and lead. The concentrations of mercury showed decreasing tendencies in animal tissue samples (1994–1996). Compared with the mean for the Czech Republic, the concentration of mercury was markedly higher in liver and kidney samples (0.064 mg/kg and 0.114 mg/kg, respectively) collected in 1998, the concentration of cadmium was moderately higher in feed, muscle, liver, and kidney samples collected in 1996–1998. Statutory limits were exceeded in two liver and two kidney samples and one feed sample only. The concentration of lead in muscle, kidney, and feed samples (1994–1996) and barn dust samples (1996–1998) showed also a decreasing tendency. However, the limit was exceeded in 16 muscle samples (0.11 to 0.23 mg/kg) collected in 1994–1999 and two kidney samples collected in 1996 (0.74 mg/kg) and 1999 (0.77 mg/kg). Heavy metals present in dust sediments apparently did not contribute significantly to their content in animal tissue. While the health risk resulting from the contents of mercury and cadmium can be classified as moderate, the contents of lead must be regarded as markedly more dangerous. For free full paper in pdf format see http://www.vri.cz/vetmed.asp

Keywords: swine farms; heavy metals; mercury; cadmium; lead; feed mixtures; dust sediments; pork; liver; kidney; health risk

INTRODUCTION

The major pollution sources in the area under study, the district of Hodonín, Czech Republic, are lignite mines, oil and earth gas sources, a large power plant, and intensive road traffic. The agriculture in this area is characterised by intensive animal (pig) and plant production including viticulture and fruit-growing. The power plant combusting brown coal and lignite and producing 1 390 tons of solid emissions a year is recognised as the most significant pollution source in the period of our monitoring (1994–1999). Our preliminary analyses done in 1980s’ demonstrated that the concentrations of lead, cadmium and mercury in fly ash from this power plant reached 32, 0.26, and 0.11 mg/kg, respectively (Raszyk et al., 1992).

Partial results of long-term investigations done on three swine farms and focussed on environmental mutagenic factors (Raszyk et al., 1995), occurrence of heavy metals in the farm environment (Raszyk et al., 1996a) and porcine tissues (Raszyk et al., 1996b), effects of the pollutants on the immune system (Raszyk et al., 1997), and differences between cattle and swine farms (Raszyk et al., 1998) were published currently. The concentrations of mercury, cadmium, and lead in edible tissues of animals were investigated in Sweden (Jorhem et al., 1991) and Finland (Niemi et al., 1991). Data on the occurrence of mercury, cadmium, and lead in the biosphere were summarised by Cibulka et al. (1991). Nicholson et al. (1999) tested livestock feed samples for the contents of heavy metals. No statutory limits have so far been laid down for the content of heavy metals in barn dust sediments; therefore we have been using the following internal non-statutory values for the assessment of the contamination rate: 0.05 mg/kg for mercury, 1.00 mg/kg for cadmium, and 15.00 mg/kg for lead.

This study was focused on 1) assessing of long-term trends of heavy metal concentrations in feed mixtures, barn dust sediments and muscular, hepatic and renal tissues of feeder pig; 2) comparison of the values obtained in the district of Hodonín with available mean values reported from the remaining 80 districts of the Czech Republic (Václ, 2000).

Supported by the Ministry of Agriculture of the Czech Republic (Project MZe-M03-99-01), the Ministry of the Environment of the Czech Republic (Project GA/1650/93) and the Grant Agency of the Czech Republic (Grant No. 525/96/024).
MATERIAL AND METHODS

Farm characteristics

The farm D. housed 17 000 feeder pigs fed dry diets except for 2 barns where the liquid feeding system Funcki (Herning, Denmark) was installed. Drinking water came from a public source and the pigs had access to drinkers.

The farm M. housed 10 000 feeder pigs fed liquid diets (system Schauer, Prambachkirchen, Austria). Water used for diet processing came from a private well.

The farm T. housed 1 650 feeder pigs fed liquid diets (system Schauer, Prambachkirchen, Austria), and drinkers were at disposal. Water used for diet processing came from a public source.

Sampling

Dry feed samples \((n = 85)\) were collected from feeding troughs (farm D.) or before mixing with water in the feed processing room (farms M. and T.). The minimum sample size was 2 000 g.

Barn dust samples \((n = 44)\) were collected using a vacuum cleaner from several sites in each barn. The mean sample weight was 1 500 g. The retained dust was sieved through a 0.7 mm mesh and only particles passing through it (approx. 85% of the total amount) were analysed.

Muscle samples \((n = 42; \text{ min. size } 1 000 \text{ g})\) were collected from planter muscles of the right thigh, hepatic samples \((n = 41; \text{ min. size } 100 \text{ g})\) from right lobe, and renal samples \((n = 42; \text{ min. size } 100 \text{ g})\) from the right kidney of pigs slaughtered at the age of 240 to 250 days and live weight of 110 to 120 kg.

Analytical methods

Ten grams (animal tissues), or five grams (dust sediments, feeds) of homogenised samples were completed with 2 ml of 10% \(\text{Mg(NO}_3\text{)}_2\), carbonised on a heating plate with a temperature gradient up to 250°C, and subsequently mineralised in a muffle oven with a temperature gradient up to 470°C. The ash was quantitatively dissolved in 10.0 ml of \(\text{HNO}_3\) (3 mol/l). Cadmium and lead were determined by atomic absorption spectrometry (AAS) in acetylene-air flame using the Perkin Elmer 3100 instrument (Perkin Elmer, USA) and mercury in the automatic mercury analyser AMA (Altec, Czech Republic) using the technique of mercury vapour generation and capture in an amalgamator. The parameters of the methods were as follows: sensitivity for mercury, cadmium and lead 0.001 mg/kg, 0.005 mg/kg, and 0.05 mg/kg, respectively; reproducibility for mercury 1.5% and for cadmium and lead less than 10%.

The contamination of the commercial feeds and porcine tissues was assessed according to current Czech legislation.

Statistical data

The results were processed using the software Stat Plus, Version 1.01 (Matousková et al., 1992). To improve the meaningfulness, the data are presented in:

a) figures showing mean values only and allowing the assessment of trends and comparisons with mean values for the Czech Republic (when available), and

b) tables showing the number of tested samples, arithmetic mean, ± S.D., and range (min. – max.).

Mean concentrations of the pollutants in feeds, muscles, livers, and kidneys were borrowed from the annual reports on contamination of food chains by xenobiotics in the Czech Republic (Valc1, 2000).

RESULTS

Contents of heavy metals (mercury, cadmium, lead) in feed mixtures, barn dust sediments, and muscular, hepatic, and renal tissues are shown in Figures 1 through 3 and Tables 1 through 3.
creasing trends were observed in tissue samples in limit for mercury in muscular tissue was increased in the exceeded in two liver samples (0.143 and 0.227 mg/kg) and two kidney samples (0.225 and 0.396 mg/kg) collect-
ed in 1998 (Table 1). It should be emphasised that the limit for mercury in muscular tissue was increased in the Czech Republic from 0.01 to 0.05 mg/kg in 1997. Decreasing trends were observed in tissue samples in 1994–1996, and in commercial feeds and barn dust sediments in 1996–1998. The concentrations in tissue, liver and kidney samples collected in 1998 were markedly higher than the mean values for the Czech Republic (Figures 1–5). This deviation was due to an isolated contamination of two pigs on the farm D.

The statutory limit (hereinafter limit) for mercury was exceeded in two liver samples (0.143 and 0.227 mg/kg) and two kidney samples (0.225 and 0.396 mg/kg) collected in 1998 (Table 1). It should be emphasised that the limit for mercury in muscular tissue was increased in the Czech Republic from 0.01 to 0.05 mg/kg in 1997. Decreasing trends were observed in tissue samples in 1994–1996, and in commercial feeds and barn dust sediments in 1996–1998. The concentrations in tissue, liver and kidney samples collected in 1998 were markedly higher than the mean values for the Czech Republic (Figures 1–5). This deviation was due to an isolated contamination of two pigs on the farm D.
Trends were observed in muscle (1996–1998) and liver samples (1996–1999). On the other hand, a moderately increasing tendency of cadmium concentration in feed samples was apparent in 1994–1999. Apart from a decrease in 1995, no variations in its content in barn dust sediments were observed. The concentrations in feed and tissue samples collected in 1996–1998 were moderately higher than the mean values for the Czech Republic (Figures 6–10).

Cadmium (Figures 6–10, Table 2)

The limit for cadmium was exceeded in one feed sample (0.630 mg/kg) collected in 1999 (Table 2). Decreasing
Mean annual cadmium concentrations in feed samples ranged from 9 to 15%, in muscle samples from 5 to 14%, in liver samples from 4 to 9%, and in kidney samples from 4 to 7% of the respective statutory limits (0.500 mg/kg, 0.100 mg/kg, 0.500 mg/kg, and 2.0 mg/kg, respectively).

Lead (Figures 11–15, Table 3)

The limit for lead was exceeded in 16 muscle samples (0.11 to 0.23 mg/kg) collected in 1994–1999 and in two kidney samples collected in 1996 (0.74 mg/kg) and 1997 (0.77 mg/kg), respectively (Table 3). Decreasing trends were observed in feed, muscle, and kidney samples collected in 1997–1999. The concentrations found in feed and kidney samples (1994–1998), muscle and liver samples (1994–1999) were higher than the mean values for the Czech Republic (Figures 11–15).

Mean annual lead concentrations in feed samples ranged from 0.01 to 0.05%, in muscle samples from 47 to 124%, in liver samples from 17 to 34%, and in kidney samples from 4 to 45% of the respective statutory limits (10,000 mg/kg, 0.100 mg/kg, 0.500 mg/kg, and 0.700 mg/kg, respectively).

DISCUSSION

Limits of permissible concentrations can be established in respect of 1) pollutant types; 2) sample types;
3) locations of farms. In our studies, the limits for lead were exceeded in 18 (8.6%; 16 muscle and 2 kidney samples), those for mercury in 4 (1.9%; 2 liver and 2 kidney samples), and those for cadmium in 1 (0.5%; feed sample) of the 210 tested samples.

In terms of sample types, the limits were most frequently exceeded in muscle tissue (16 of 42 samples; 38.1%), followed by renal tissue (2 of 42 samples; 4.8%), hepatic tissue (2 of 41 samples; 5%), and feed (1 of 85 samples; 1.2%). The mean cadmium concentration in kidney tissue for 1995–1998 is comparable with the data (0.11 mg/kg) published by Grøwe et al. (1997) and our data for 1999 (0.086 mg/kg) did not exceed significantly the mean value established in Sweden (0.071 mg/kg) by Linden et al. (1999). On the other hand, mean cadmium concentrations in feed mixtures for 1998 and 1999 (0.076 and 0.075 mg/kg) were more than twice as high as that reported from Sweden (0.037 mg/kg).

In terms of farms, the limits were exceeded on the farm D. in 14 of the 76 tested samples (18.4%; 7 muscle, 4 kidney, 2 liver and 1 feed samples), on the farm M. in 5 of the 73 tested samples (6.8%; 5 muscle samples), and on the farm T. in 4 of the 61 tested samples (6.5%; 4 muscle samples). The data of the long-term investigation of the Hg, Cd and Pb concentrations stressed a discrepancy between the limits for lead in feeds and porcine tissues. The current limit for lead in feeds (10 mg/kg) appeared to be high and should be reduced to a value around 2 mg/kg.

Monitoring of pollutant concentrations in barn dust sediments provides the basic information for the as-
sessment of indoor contamination rate in animal houses. Considering the internal limits for heavy metals in barn dust sediments, excessive concentrations were found in 8 of the 44 samples tested in 1994–1999 (18.2%; lead 7 samples, cadmium 1 sample); the majority of the contaminated barn dust samples were found most frequently on the farm T. (5 of 12 samples; 41.7%), followed by the farm M. (2 of 18 samples; 11.1%), and the farm D. (1 of 14 samples; 7.1%). Heavy metals present in dust sediments apparently did not contribute significantly to their content in animal tissue. This was evident from the results obtained on the farm T., where the highest number of barn dust samples and the lowest number of tissue samples with excessive concentrations were found. A comparison of heavy metal concentrations in barn dust sediments and feeds showed that the former were invariably higher. The concentration of mercury in barn dust sediments followed its concentration in feed mixtures. We can therefore assume that feed mixtures were the major source of mercury found in dust sediments. The concentration of cadmium in barn dust sediments varied within a narrow range (0.08 to 0.11 mg/kg) and only small fluctuations (0.04 to 0.08 mg/kg) were observed in feed mixtures throughout the monitoring period. No relation was found between lead concentrations in barn dust sediments and feeds. We can therefore assume that the major source of lead found in dust samples was either from the feed used in the farms.

In our previous studies, analyses of barn dust sediments proved to be a useful tool for the identification of pollution sources (Raszyk et al., 1998). Investigations done on the farm D. in 1998 showed excessive concentrations of mercury in hepatic and renal samples, but not in muscle samples. We assume that in this case the source of mercury may have been phenylmercury-treated grain that inadvertently got its way into a feed mixture. The assumption of accidental contamination is supported by lower mercury concentrations in porcine tissues in the preceding (1994–1997) and the subsequent (1999) years.

The limit for cadmium was exceeded in only one feed sample collected in 1999. The limits for cadmium in muscular and renal tissues were increased in the Czech Republic in 1997 from 0.05 to 0.10 mg/kg and from 1.00 to 2.00 mg/kg, respectively. The major sources of cadmium on swine farms include cadmium-contaminated mineral components of commercial feeds and phosphate fertilizers (Linden et al., 2001).

The concentrations of lead were found to exceed the limits most frequently, which applied particularly to pork (to muscular tissue samples). This fact may have been due, among other reasons, to the decision of the Czech authorities to tighten from 1997 the limits for lead in muscular, hepatic and renal tissues from 0.5 to 0.1 mg/kg, from 1.0 to 0.5 mg/kg, and from 1.0 to 0.7 mg/kg, respectively. Therefore the most hazardous among the three heavy metals monitored on the swine farms in the district of Hodonín in 1994–1999 was apparently lead. Its major sources may include paint coats containing more than 0.6 g lead per kg, mineral components of commercial feeds, scrap lead batteries put away somewhere in barns, and lead-coated guide bars of electricity distribution systems.

CONCLUSIONS

The limit for lead was exceeded in 38.1% of muscular tissue samples collected in 1994–1999. Also concentrations of lead in other samples collected in the district of Hodonín in 1994–1998 were higher than mean values for the Czech Republic. Hence, lead poses the most serious health hazard. Increased concentrations of mercury and cadmium were found in several samples only. Decreasing tendencies were observed for mercury and cadmium in majority of samples. The major sources of mercury, cadmium, and lead on swine farms in the district of Hodonín were suggested. Heavy metals present in dust sediments apparently did not contribute significantly to their content in animal tissue.

Acknowledgement

The authors wish to thank to Dr. J. Salava and Dr. J. Palác (District Veterinary Administration, Hodonín, Czech Republic) for their helpful co-operation. Effective assistance of the State Veterinary Administration of the Czech Republic (supervisor Dr. J. Drápal) is appreciated.

REFERENCES

Received: 01–03–28
Accepted after corrections: 01–05–15

Corresponding Author:

Ing. Robert Ulrich, Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic
Tel. +420 5 41 32 12 41, fax +420 5 41 21 12 29, e-mail: ulrich@vri.cz